Laser Fusion Implosion Experiments
نویسندگان
چکیده
منابع مشابه
Hohlraum-driven high-convergence implosion experiments with multiple beam cones on the omega laser facility.
High-convergence implosion experiments have been performed on the Omega laser facility [T.R. Boehly, Opt. Commun. 133, 495 (1997)]] using cylindrical gold hohlraums with 40 drive beams arranged into multiple cones. These experiments make use of improved hohlraum radiation symmetry conditions [T.J. Murphy, Phys. Rev. Lett. 81, 108 (1998)]] to demonstrate near predicted primary (2.45 MeV) neutron...
متن کاملImplosion experiments using glass ablators for direct-drive inertial confinement fusion.
Direct-drive implosions with 20-microm-thick glass shells were conducted on the Omega Laser Facility to test the performance of high-Z glass ablators for direct-drive, inertial confinement fusion. The x-ray signal caused by hot electrons generated by two-plasmon-decay instability was reduced by more than approximately 40x and hot-electron temperature by approximately 2x in the glass compared to...
متن کاملHigh-adiabat high-foot inertial confinement fusion implosion experiments on the national ignition facility.
This Letter reports on a series of high-adiabat implosions of cryogenic layered deuterium-tritium (DT) capsules indirectly driven by a "high-foot" laser drive pulse at the National Ignition Facility. High-foot implosions have high ablation velocities and large density gradient scale lengths and are more resistant to ablation-front Rayleigh-Taylor instability induced mixing of ablator material i...
متن کاملProton radiography of a laser-driven implosion.
Protons accelerated by a picosecond laser pulse have been used to radiograph a 500 microm diameter capsule, imploded with 300 J of laser light in 6 symmetrically incident beams of wavelength 1.054 microm and pulse length 1 ns. Point projection proton backlighting was used to characterize the density gradients at discrete times through the implosion. Asymmetries were diagnosed both during the ea...
متن کاملDetection of Hohlraum Target Position for Laser Fusion Experiments
A hohlraum is a cylindrical structure that holds a laser fusion target at the National Ignition Facility. It must be aligned properly for all the 192 laser beams to hit the target and cause a fusion reaction. Video images of the hohlraum are used to align the hohlraum to the required position. A matched filtering based approach is used to locate the circular alignment fiducial of the hohlraum. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Review of Laser Engineering
سال: 1986
ISSN: 0387-0200,1349-6603
DOI: 10.2184/lsj.14.1090